

CLFV in Heavy States

Workshop Summary

Simone Pagan Griso (LBNL) for EF09

Oct 2nd 2020

Workshop Agenda

CLFV - Heavy state decays

Thursday Sep 3, 2020, 10:00 AM → 2:25 PM US/Central

- Joint workshop EF02-EF09-RF5 https://indico.fnal.gov/event/44931/
- Review constraints on direct searches of charged lepton-flavor violation decays of heavy (W,Z,t,H, heavy exotic) states
- Interplay with low-energy constraints
- Huge thanks to the speakers and attendees
 - This summary borrows/summarizes slides presented. All credits to workshop's speakers, all mistakes/omissions on me

Heavy SM State LFV Decays and New Physics

In the SM, LFV decays of Z, Higgs and top heavily suppressed

e.g.
$$\mathsf{BR}(Z \to \mu e) \sim \mathsf{BR}(Z \to \mu \mu) \left| \frac{g^2}{16\pi^2} \frac{m_\nu^2}{m_W^2} \right|^2 \sim 10^{-50}$$

New Physics at a scale Λ_{NP} alters these BRs

$$rac{\mathsf{BR}(Z o \mu e)}{\mathsf{BR}(Z o \mu \mu)} \sim g_\mathsf{NP}^2 \left(rac{v}{\Lambda_\mathsf{NP}}
ight)^4 \;, \quad rac{\mathsf{BR}(H o au \mu)}{\mathsf{BR}(H o au au)} \sim g_\mathsf{NP}^2 \left(rac{v}{\Lambda_\mathsf{NP}}
ight)^4 \ rac{\mathsf{BR}(t o c \mu e)}{\mathsf{BR}(t o Wb)} \sim rac{g_\mathsf{NP}^2}{16\pi^2} \left(rac{v}{\Lambda_\mathsf{NP}}
ight)^4$$

Caveat: the situation in concrete model can be quite different

LFV in Higgs decays

- Searches limited by statistics of available Higgs bosons and large backgrounds
 - Further categorize events based on expected Higgs production mechanism

LFV in Higgs decays

- ▶ Weak indirect constraints from $\tau \to \mu \gamma$ and $\tau \to e \gamma$.
- ▶ But $\mu \to e\gamma$ strongly constrains BR($H \to \mu e$) and BR($H \to \tau \mu$)×BR($H \to \tau e$)

Blankenburg, Ellis, Isidori 1107.1216; Harnik, Kopp, Zupan 1209.1397; Davidson, Verdier 1211.1248

LFV in Z decays and high-mass di-lepton

Take advantage of large number of produced W,Z and top at LHC

▶ Severe indirect constraints on $Z \to \mu e$ from $\mu \to e\gamma$, $\mu \to 3e$, $\mu \to e$ conversion (barring accidental cancellations).

(e.g. Delepine, Vissani hep-ph/0106287; Davidson, Lacroix, Verdier 1207.4894)

Run I+2+3: 300 fb-1 I.5 I0 ¹⁰ Z's 6 I0 ¹⁰ W's 2 I0 ⁸ top's End of HL-LHC: 3000 fb-1

Complementary sensitivity in the case of taus.

High mass di-lepton final state can provide complementary coverage

Eff. coeff.	Operator	SMEFT
$C_{V_{LL}}^{ijkl}$	$\overline{q}_{Li}\gamma_{\mu}q_{Lj})(ar{\ell}_{Lk}\gamma^{\mu}\ell_{Ll})$	$\mathcal{O}_{lq}^{(1)},\mathcal{O}_{lq}^{(3)}$
$C_{V_{RR}}^{ijkl}$	$(\overline{q}_{Ri}\gamma_{\mu}q_{Rj})(\overline{\ell}_{Rk}\gamma^{\mu}\ell_{Rl})$	$\mathcal{O}_{ed}, \mathcal{O}_{eu}$
$C_{V_{LR}}^{ijkl}$	$(\overline{q}_{Li}\gamma_{\mu}q_{Lj})(\overline{\ell}_{Rk}\gamma^{\mu}\ell_{Rl})$	\mathcal{O}_{qe}
$C_{V_{RL}}^{ijkl}$	$(\overline{q}_{Ri}\gamma_{\mu}q_{Rj})(ar{\ell}_{Lk}\gamma^{\mu}\ell_{Ll})$	$\mathcal{O}_{lu}, \mathcal{O}_{ld}$
$C_{S_R}^{ijkl}$	$(\overline{q}_{Ri}q_{Lj})(\overline{\ell}_{Lk}\ell_{Rl}) + \text{h.c.}$	\mathcal{O}_{ledq}
C_{SL}^{ijkl}	$(\overline{q}_{Li}q_{Rj})(\overline{\ell}_{Lk}\ell_{Rl})+\text{h.c.}$	$\mathcal{O}_{lequ}^{(1)}$
C_T^{ijkl}	$(\overline{q}_{Li}\sigma_{\mu\nu}q_{Rj})(\overline{\ell}_{Lk}\sigma^{\mu\nu}\ell_{Rl}) + \text{h.c.}$	$\mathcal{O}_{lequ}^{(3)}$

LFV in top decays

Take advantage of large number of produced W,Z and top at LHC

3 body decays that violate lepton and quark flavor $t \to q\ell\ell'$

(Davidson, Mangano, Perries, Sordini 1507.07163)

The decays are competing with an unsuppressed 2 body decay $t \rightarrow Wb$

$$\mathsf{BR}(t o c \mu e) \sim rac{g_\mathsf{NP}^2}{16\pi^2} \left(rac{v}{\Lambda_\mathsf{NP}}
ight)^4 \sim 2 imes 10^{-5} imes g_\mathsf{NP}^2 \left(rac{1\,\mathsf{TeV}}{\Lambda_\mathsf{NP}}
ight)^4$$

 $\mathcal{B}(t \to \ell \ell' q) < 1.36^{+0.61}_{-0.37} \times 10^{-5}$ (expected). [11] $\mathcal{B}(t \to \ell \ell' q) < 1.86 \times 10^{-5}$ (observed). $\mathcal{B}(t \to e \mu q) < 4.8^{+2.1}_{-1.4} \times 10^{-6}$ (no τ in cLFV vertex, expected), $\mathcal{B}(t \to e \mu q) < 6.6 \times 10^{-6}$ (no τ in cLFV vertex, observed).

Possibly in reach of the LHC for New Physics at the TeV scale.

Very few studies available for HL-LHC

Table 5 Expected upper limits on $BR(t \to q\mu^{\pm}e^{\mp})$, under the hypothesis of the absence of signal, for 8, 13 TeV (in two scenarios: the case of 20 and 100 fb⁻¹ collected luminosity) and 14 TeV for 3000 fb⁻¹ collected luminosity

	$8 \text{ TeV } (20 \text{ fb}^{-1})$	13 TeV (20 fb ⁻¹)	$13 \text{ TeV } (100 \text{ fb}^{-1})$	$14 \text{ TeV } (3000 \text{ fb}^{-1})$
$BR(t \to q \mu^{\pm} e^{\mp})$	$<6.3 \times 10^{-5}$	$< 2.9 \times 10^{-5}$	$<1.2 \times 10^{-5}$	$\lesssim 2 \times 10^{-6}$

LFV/LNV in W and high-mass W_R decays

Extrapolations show up to $m(W_R)$ ~ 35 TeV for 100 TeV pp collider, depending largely on RHN mass for I_1I_2jj

Direct searches for LFV decays in exotic states

Heavy resonances appear in most BSM models

Interplay with low-energy searches can heavily depend on model, but some of these searches are complementary, some largely constrained

LHC searches

Final state	Interpretations	Dataset	Experiment
еµ	RPV, QBH, Z'	36/fb, 13 TeV	CMS
ετ, μτ	RPV, QBH, Z'	36/fb, 13 TeV	ATLAS
Multileption	Heavy fermions	36/fb, 13 TeV	CMS
μт	Light scalar	2/fb, 13 TeV	LHCb
μт	Heavy scalar	36/fb, 13 TeV	CMS

 m_H [GeV]

Few words about Leptoquarks

- Leptoquarks could lead to LFV and LFUV
- ➤ Increased interest in leptoquark searches due to B-anomalies
- ➤ LQ LFV models generally have very low cross-section, or allowed LQ mass very high, so current searches focus on generation specific LQs
- ➤ Pair production/ single production
- ➤ Mass exclusion limit at the ballpark of 1 TeV (depends on model)

Summary of CMS LQ searches

scalar LQ (pair prod.), coupling to 1^{∞} gen. fermions, $\beta=1$ scalar LQ (pair prod.), coupling to 1^{∞} gen fermions, $\beta=0$. Scalar LQ (pair prod.), coupling to 2^{nd} gen. fermions, $\beta=1$ scalar LQ (pair prod.), coupling to 2^{nd} gen. fermions, $\beta=1$ scalar LQ (pair prod.), coupling to 2^{nd} gen. fermions, $\beta=0.5$ scalar LQ (pair prod.), coupling to 2^{nd} gen. fermions, $\beta=1$ scalar LQ (pair prod.), coupling to 2^{nd} gen. fermions, $\beta=1$ scalar LQ (pair prod.), coupling to 2^{nd} gen. fermions, $\beta=1$

Conclusions

- Productive workshop to explore connections between energy frontier and RF5
- Interplay with low-energy measurements results in some complementarity
- Very few projection for HL-LHC
 - Some of the analyses are rather complicated, such that a simple extrapolation is unlikely to yield an accurate estimation of the HL-LHC sensitivity
- Some exploration of future collider reach available
 - not comprehensive by any means

BACKUP

On-shell production of H at hadron/lepton colliders

Dev, Mohapatra & YCZ '18 PRL; PRD

• the $q\bar{q}/e^+e^-$ process

$$q\bar{q}, e^{+}e^{-} \rightarrow \ell_{\alpha}^{\pm}\ell_{\beta}^{\mp} + H, \quad e^{+}e^{-} \rightarrow \nu_{\alpha}\bar{\nu}_{e} + H$$

$$q, e^{-} \qquad \qquad \ell_{\alpha}^{+} \qquad e^{+} \qquad \qquad \bar{\nu}_{e}$$

$$\downarrow^{+} \qquad \downarrow^{-} \qquad \qquad \ell^{-} \qquad \qquad \ell$$

involving the laser photon(s)

